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SHORT COMMUNICATION 
PROCESS SPLITTING OF THE BOUNDARY CONDITIONS FOR THE 

ADVECTION-DISPERSION EQUATION 

KOLAWOLE 0. AIYESIMOJU AND RODNEY J. SOBEY 
Department of Civil Engineering, Universify oj  Calqornia, Berkeley. C A  94720. U.S.A. 

SUMMARY 
Rational strategies are considered for the specification of the intermediate boundary condition at an inflow 
boundary where process splitting (fractional steps) is adopted in solving the advection-dispersion equation. 
Three lowest-order methods are initially considered and evaluation is based on comparisons with an 
analytical solution. For flow and dispersion parameter ranges typical of rivers and estuaries, the given 
boundary condition for the complete advection-dispersion equation at the end of the complete time step 
provides a satisfactory estimate of the intermediate boundary value. This was further confirmed by the 
development and evaluation of two higher-order methods. These required non-centred discrete approxi- 
mations for spatial derivatives, which offset any special advantages from the higher truncation error order. 

KEY WORDS Process splitting Advection4ispersion equation Boundary conditions 

INTRODUCTION 

For solving the one-dimensional advectiondispersion equation 

ac ac a2c 
at ax a x 2  * 
- +u-  =D- -  

where C is the concentration of some solute, u is the flow velocity, D is the dispersion coefficient, t 
is the time and x is the spatial position, the fractional step algorithm'-' has achieved reasonable 
precision and economy without recourse to higher-order approximations. It involves splitting 
equation (1) into its component processes of advection and dispersion respectively as follows: 

ac ac 
- +u- =o, 
at ax 
ac a2c 
- = D 7 .  
at ax 

The complete problem is replaced by a succession of advection and dispersion steps, appropriate 
solution algorithms being utilized for the separate steps. 

The major criticism of all splitting techniques4 is that the known boundary conditions 
correspond to the complete differential equation and not to the split equations. This problem has 
received considerable attention in the context of initial value problems in two space dimensions; 
for example, for hyperbolic  system^^.^ and parabolic systems.' Leveque and Oliger' considered 
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boundary conditions for time-split methods for hyperbolic systems which describe transport at 
two disparate speeds, such as the one-dimensional long-wave equations. 

These approaches all implicitly assume that higher-order estimates of the intermediate 
boundary condition are consistent with higher-order accuracy. In the specific context of transient 
mass transport response of rivers and estuaries, where advection is overwhelmingly the dominant 
process but with dispersion dominant over relatively short periods of time ( e g  at slack water'), it 
will be shown that the given boundary condition at the end of the complete advection-dispersion 
time step provides a satisfactory estimate of the intermediate boundary value despite the fact that 
it is a lowest-order estimate. It in fact outperforms a higher-order method. 

The numerical context of this solution is the fractional step algorithm of so be^,^ which solves 
the advection step using a moving co-ordinate system. The concentration at a node remains 
constant during the advection step but the node location changes, generally resulting in a non- 
uniform grid. The dispersion step adopts the Asymmetric Dispersion Algorithm,' a finite 
difference algorithm that accommodates grid asymmetry to optimum precision at lowest order. 

x ;*I ,:+I 

DISPERSION STEP 

INFLOW AND OUTFLOW BOUNDARIES 

The following discussion will be restricted to a left-hand boundary, as equivalent considerations 
for a right-hand boundary follow directly and do not require separate discussion. Let the spatial 
position of node j at time kAt be designated xi" and the numerical estimate of the solution at that 
position and time be designated Cy. Subsequently, the analytical solution to the complete 
advection-dispersion equation for node j at time kAt will be designated A?, where C and A are 
comparable only at complete time steps. The boundary node at each half time step will be 
designated as j = O .  Let the given boundary conditions to the unsplit problem at time kAt be 
Y(kAt), which is designated as Yk. The given boundary conditions are then 

(3) 
at complete time steps where equation (1) and equations (2) correspond. 

Process splitting requires also that CG+ 'I2 (Figures 1 and 2) be specified and this is the essential 
problem. The geometry at left-hand inflow and outflow boundaries is illustrated in Figures 1 and 2 
respectively. For an inflow boundary the advection step characteristic path to node x;+ 112 comes 
from outside the solution domain and C",'"' remains unknown. For an outflow boundary, 

Cn, = tpn and (-n,+l=tp,n+l 

' chprsurislic falls ouuidc dannin 

Figure 1 .  Process splitting at left inflow boundary 
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DISPERSION STEP 

c;+* Ci'h 

however, the advection step characteristic path to node x;+ comes from within the solution 
field. The intermediate numerical boundary condition is available from the solution of the 
advection step (Figure 2) as 

(4) c n + 1 / 2 = ~ ; .  
0 

TAYLOR SERlES ESTIMATES OF INTERMEDIATE INFLOW BOUNDARY 
VALUES 

Rational extrapolation in time about known boundary values C;  and C;+ are based on Taylor 
series expansions, giving 

AtZ d2C 
(1:' ' I 2  = C; +At + %-I0 + o(At3), 

a c ] ; + 1  At2 aZc].+i 

at 2 d t  0 
C;+ = C;' -At - + - + O(At3). 

( 5 )  

A number of first- and higher-order approaches have been systematically adopted from 
equations (5 )  and (6) for further analysis. Method A is the obvious initial estimate, namely the 
boundary condition to the complete equation at time (n + 4) At: 

(7) ~ ; + 1 / 2 = y n + l / 2  

This is the average of equations (5) and (6) to infinite order. Method B truncates equation (5) after 
the initial term, defining the O(At) estimate: 

(8) c;+ 1 / 2  = y n .  

Method C is the analogous O(At)  estimate from equation (6): 
c;+ 1/2 = y n +  1. (9) 

Initial analysis will consider these three lowest-order methods. 
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GLOBAL ANALYSIS 

As a consequence of the moving co-ordinate system adopted for the advection step and the 
varying number of nodes with time, standard methods of stability analysis are inappropriate. 
Global analysis will be based on numerical experiments. 

The numerical experiments were conducted in a dimensionless framework, in terms of Ax and 
At as the space and time scales. Equation (1) becomes 

where x' = XJAX, t' = t /At ,  u' = uAt/Ax (flow parameter) and D' = DAt/Ax2 (dispersion parameter). 
Dropping superscripts, equation (10) reverts to equation (1) with u and D being flow and 
dispersion parameters respectively; t is now the number of time steps and x is the number of space 
steps. 

The initial conditions (see Figure 3) are a Gaussian hump with a unit peak at x = O  and an initial 
half-width of B, i.e. C( & B, 0)=0.5. The analytical solution is 

- (X - ut)2 
c ( x ,  t ) =  (i +l)-'"exp(-----) 4D(t + t o )  ' 

where to  = B2/4D In 2. The extreme concentration gradients imposed here are typical of those 
conditions that maximize numerical difficulties in field applications of the advection-dispersion 
equation in the river and estuary context. 

An integral measure of the performance of a method over the complete solution field is the 
normalized mean square error 

I"' 1 1  
E = -- c - c ( (C? - A?)/A",,,)2 , 

N n [ L  j 
where L(n) is the total number of spatial nodes at time n and N is the total number of time steps in 
the numerical experiment. Aka,, is the maximum concentration after n time steps, obtained from 
the analytical solution as Aka,, =(n/t ,  + l)-'/'. 

Typically, flow parameters u are of order 1 and dispersion parameters D are of order 0.01 in 
rivers and estuaries. Numerical experiments were conducted for u ranging from 0 to 3 and D 

x ' 4  X d F  X - U I  

W boundary) 

Figure 3. Boundary condition test problem 

I =xL 

(right boundary) 
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ranging from lo-' to 10. For these experiments, N was 15 and L(0) was 56. With an initial half- 
width B of 1.0 (almost beyond the resolution capability of the grid), the experiments for the most 
part represent the propagation of an initially steep concentration peak across the left-hand 
boundary and into the solution domain. The computed mean square errors E for methods A, B 
and C are presented in Figures *a), 4(b) and 4(c) respectively as contour plots. 

0 

,050 

0.0 0.s 1 .o  1.5 2 . 0  2 . 5  3 . 0  
Flow parameter u 

Figure 4a). Normalized mean square error for method A 

0 

Figure qb). Normalized mean square error for method B 
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Flow parameter u 

Figure qc). Normalized mean square error for method C 
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0 .0  0.5 1 .o 1.5 2.0 2.5 3.0 
Flow parameter u 

Figure qd). Normalized mean square error for 'exact' method 

There are two significant sources of error in these computations; one is due to the intermediate 
boundary value specification and the other to the numerical approximation to the dispersion step. 
To isolate the errors due to the intermediate boundary value specification, Figure 4(d) shows the 
mean square errors for the 'exact' intermediate boundary value. At the beginning of each complete 
time step, before advection, the analytical concentration distribution is known (equation ( 1  1)). At 
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a left-hand inflow boundary (see Figure 3) the exact specification for C;+ is C(X F - u, n), the 
concentration at x = X F  - u being advected during the advection step to x = X F .  This ‘exact’ 
method for the advection step provides a truly exact solution only if there is no error in the 
dispersion step computation. Residual errors are attributable almost entirely to this dispersion 
step. Of course this ‘exact’ method is not available in practice, where there would be no knowledge 
of the concentration distribution outside the boundaries. 

Comparison of Figures +a), 4(b) and 4(c) demonstrates the generally superior performance of 
method C over methods A and B, where the dispersion parameter is less than 1. The mean square 
errors are very small for all the methods for flow parameters less than 2 (E<0.02 for method A, 
E<0.03 for method B and E < O 0 1  for method C). The agreement between method C and the 
‘exact’ method is nearly perfect. The relative success of method C is clearly attributable to the 
major role played by advection in this parameter range. There is a local maximum of the mean 
square error (still <0.03) at u= 3.0 and D = lo-’ for both method C and the ‘exact’ method, which 
is not due to the intermediate boundary specification method. In the original analysis of the 
fractional step algorithm (Figure 4 of S0bey3), plots of integrated square error also show a local 
peak of the error at dispersion parameters between 1 and 10 and this quite naturally is repeated in 
the present analysis. 

For dispersion parameters in excess of 1, the results deteriorate for all the methods, including 
the ‘exact’ method. The asymmetric dispersion algorithm9 was not designed for such large 
dispersion parameters, which rarely occur in rivers or estuaries. In the advection-dominated 
context of rivers and estuaries, method C is satisfactory throughout the parameter range and 
would clearly be chosen over methods A and B. 

The mean square error provides a global measure of the performance of the various 
intermediate boundary value estimators, but reveals little of response extremes. The maximum 
and minimum normalized differences (i.e. the largest positive and largest negative differences) 
between the computed solution Cj. and the analytical solution A; over all nodes and all time steps 
are 

(13) 

For dispersion parameters less than 1 and flow parameters less than 2, values of Em,, and Emin 
generally confirm” the superiority of method C and its closeness to the ‘exact’ method. In 
addition, the maximum error bounds for method C remain acceptably small (approximately 
-- 0.04 to 0.03). Outside this parameter range the maximum error bounds increase substantially. 
Within active parameter ranges for river and estuarine situations, however, these results confirm 
that method C provides an appropriate estimate of the intermediate boundary value. 

HIGHER-ORDER ESTIMATES 

The above analysis provides compelling evidence to recommend the adoption of method C 
without further consideration. Further confirmation, however, is provided by higher-order 
approximations from equations (5) and (6) respectively. 

Method D is based on equation (5).  The Taylor series expansion for C“,+”2 about C;  traverses 
the region of the solution domain governed not by the full advectiondispersion equation but by 
the advection equation (equation (2a)), which implies that 
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In addition, where u is constant (a convenient but not a necessary assumption), 

Substituting for ---I ac and :$T 
c?t 0 0 

in equation (5) gives 

A discrete approximation to the second derivative at  the left-hand boundary will require at least 
three spatial nodes: the boundary node 0 and the next two internal nodes 1 and 2. It is convenient 
to use these same three nodes to approximate the first derivative. These non-centred approxima- 
tions are1* 

dC - (3  + A )  2 1 + A  

2 
1 - A  

where A = (x l  - x; -- Ar)/Ar and Ar = (x; - x;)/2. Equations (1 5) and (16) can be used in equa- 
tion (14) to establish the predictive equation for method D: 

This is the asymmetric equivalent of the well known downwinding algorithm. 
Similarly for Method E ,  equation (6) is rearranged as 

Equation (2b) is the governing equation in this solution region, giving 

Substituting for d2C/dx2 from equation (16) gives method E as 

Evaluation of these higher-order estimates for the intermediate boundary condition is again 
based on the global mean square error. Figures 5(a) and 5(b) show the flow4ispersion 
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Figure ya). Normalized mean square error for method D 
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Figure yb). Normalized mean square error for method E 

dependency for methods D and E respectively. Method D in particular performs quite poorly in 
comparison with the 'exact' method, mean square errors exceeding 0.05 in the river and estuarine 
parameter range (u < 2, D < 1). Method D is in fact significantly less satisfactory than any of the 
O(At)  estimators in Figures *a)+). This is not surprising, however, given the very substantial 
distortions that are a direct consequence of downwinding. Figure 5(b) on the other hand is almost 



244 SHORT COMMUNICATION 

identical to Figuresqc) and qd).  As expected perhaps because of its close relationship to 
method C, the performance of method E is excellent, but the non-centred discrete approximations 
have almost exactly offset any advantage from the higher truncation error order. There is no 
measurable improvement over method C. 

CONCLUSIONS 

Three lowest-order approximations (methods A, B and C) for specifying the intermediate 
boundary value in the fractional step solution of the advection-dispersion equation were initially 
evaluated. Method A adopts the known boundary condition to the complete equation at  the 
intermediate time. Methods B and C are O(&) estimates from the known boundary conditions at 
times nAt and (n  + 1)At respectively. 

The performance of method C was excellent for flow parameters less than about 2 and 
dispersion parameters less than about 1, the range of typical river and estuarine flows for which the 
fractional step algorithm was designed. 

Methods D and E investigated the potential of higher-order approximations. Their per- 
formance was, however, disappointing as they required estimates of spatial derivatives at the 
boundary. The consequent non-centred discrete approximations offset any potential advantage 
from the higher truncation error order. For method D in particular the downwinding errors 
became dominant. Method E was almost identical to method C, which because of its simplicity 
and accuracy remains the recommended approach for typical river and estuarine systems. 
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